滤波技术是剔除噪声中应用最为广泛的一种方法。通过抑制信号的某些频率成分,滤波可以实现对信号频率的修正。由于任何信号,任意类型(电的,机械的等)的装置都可用频率域的函数来表示,因此,任何装置都可看成是滤波器。
根据滤波器的选频作用,可以把滤波器分成四类摆5闭,如图5-5所示。其中, 和分别被称为通带截止频率和阻带截止频率, 与之间则称为过滤带。对于低通和高通滤波器,分别各有一个通带、一个阻带和一个过渡带;带通滤波器有两个阻带、一个通带和两个过渡带;而带阻滤波器则有一个阻带、两个通带和两个过渡带。
1)低通滤波器。如图5-5补所示,通带范围是,高于 为阻带。
2)高通滤波器。通带范围是,低于 为阻带,如图5-5产所示。
3)带通滤波器。通带范围是,通带两侧都为阻带,或是较狭窄的过渡带,如图5-5肠所示。
4)带阻滤波器。阻带范围是,阻带两侧都为通带,或是较狭窄的过渡带,如图5-5诲所示。
图5-5 滤波器
a)低通滤波器 b)高通滤波器 c)带通滤波器 d)带阻滤波器
设某时域信号厂(迟),对应的傅里叶变换为蝉(蹿),滤波器传递函数为贬(蹿)。从数学角度看,滤波相当于是蝉(蹿)与贬(蹿)的相乘处理摆4闭,如图5-6所示。
图5-6信号的滤波步骤
a)输入频谱 b)理想带通滤波器的传递函数 c)滤波后的信号频谱
通过频率滤波器后,相当于原时域信号厂(迟)被修改成为。根据卷积定理,厂(迟)、 以及滤波器对应时域信号丑(迟)之间存在下列关系:
式中,S(t)为滤波前信号; h(t)为滤波器传递函数H(f)的反博里叶变换。
h(t)也称为脉冲函数,因为如果滤波器的输入端为陡直脉冲激励,其具有平坦频谱,则滤波器输出信号正好与此函数相一致。图5-7所示为图5-6中的矩形带通滤波器的脉冲函数。该信号的数学表达式为
从有理性角度而言,该脉冲函数似乎无物理意义,因为它在时间上存在迟&濒迟;0的情况(意味着输出信号产生在输入激励信号出现之前,有违因果律)。实际的滤波器在通带与阻带之间具有平滑的过渡区,其脉冲函数为一时限函数。图5-8为无损检测中用来优化检测灵敏度的典型带通滤波器。
某些材料中的超声波衰减与频率之间有依从关系,这也可以看做是滤波效应。因此,可以采用材料的传递函数来评价介质的物理和几何特性。
灵高超声波起源于1993年,致力于超声波塑焊高端技术应用,集于研发技术、产物制造、销售、服务、全产业链自制的工业超声波技术机器和系统供应商。公司拥有104台CNC加工 设备,为客户供应中山超声波焊接机、江门超声波焊接机、阳江超音波 设备配件等、根据厂家需求定制非标设备,会和顾客一起从最开始的生产规划逐渐,寻找最好的生产工艺流程和生产线设备。长期以来,产物广泛运用在塑料、医疗器械、3C电子、汽配行业等多个领域。为海内外各大公司,提供高品质超声波焊接设备及行业应用方案。未来,我们将继续发挥资源、技术、市场等多方面的优势?砺前行,引领中国超声波塑焊技术发展。